Visitors to the legendary Crystal Palace, built in London for the Great Exhibition of 1851, were said to be awed by its unprecedented expanses of glass – 900,000 square feet of it (84,000 square metres). So much natural light. So spacious. Such openness to the surrounding Hyde Park, including three large elm trees left standing inside.
In 2018 Autodesk named AGACAD, a developer of BIM software for Revit professionals, one of its first AEC Industry Partners, with special reference to precast concrete. In fact, precast is an area where BIM adoption has been slow and where for long Autodesk Revit was not an obvious choice of platform. AGACAD has done much to change that. We sat down for a chat with Donatas Aksomitas, the CEO of AGACAD, and Valensas Balsevičius, a structural engineer and BIM Application Engineer at the company.
What are the current dynamics in the world of precast concrete?
Donatas: Precast is getting bigger and bigger, like prefabrication in general. Prefab is the future of construction – at least until people start just printing whole buildings. There’s less waste, shorter work time on site meaning lower costs for things like cranes, plus less noise, easier logistics… Everyone’s moving toward that: making construction elements in a factory and bringing them to site for assembly. The next step after panels is full module production – delivering not one wall but four, already connected and finished.
Whether it’s clothes, food or furniture, people often tend to associate factory-made items with lack of quality. While this might be true to some extent, it’s definitely not the case with modern prefabricated houses. They’re just as good as any other building, but they’re built off-site. Imagine having every part of the structure made within the confines of a factory, delivered to the construction site and assembled in a matter of weeks. Not only that, prefabricated housing can help save money, time and also contribute to reducing CO2 emissions.
The legend of Solomon’s Temple
While it’s difficult to say who constructed the first prefabricated structure, we can be sure that one of the earliest successful attempts took place about 3000 years ago in ancient Jerusalem. This is evident from a vivid Biblical account of how the Temple of Solomon was built. It seems that every piece of the temple was carefully crafted off-site and assembled on-site:
“And the house, when it was in building, was built of stone made ready before it was brought thither: so that there was neither hammer nor axe nor any tool of iron heard in the house, while it was in building.” (1 Kings 6:7)
When it comes to wood and metal framing, Renata Jociene, Lead BIM Application Engineer at AGACAD, has tremendous insight and experience. She agreed to share her thoughts on the current state of BIM software for framing all types of buildings with timber and with cold-formed steel.
Q: To start, could you tell us a bit about trends today in framed construction?
Framing always played a big role in the building industry and today that role is only growing, especially with people’s focus on green solutions.
Both wood and steel framing have major advantages for sustainability – big efficiencies in both the construction and use of a facility, and recyclability. That’s true all over the world, though there are regional differences. Like in the U.S., where so much timber is available and there’s a long tradition of wood-frame houses, as I recently wrote in the article “Wooden Houses in the USA: A Centuries-Old Building Tradition”.
Framing is being used not only for houses, but for all types of buildings really. Wood is more common for residential, and metal for industrial or commercial facilities, but a lot depends on structural needs and choices. Wood framing is more earthquake resistant, for instance. In any case, big efficiency gains are being achieved with pre-fabrication solutions. The world is steadily moving to BIM, including framed construction, and “BIM-to-fabrication” is a hot keyword in the field.
Wooden homes are one of the cornerstones of American culture. That’s something we’ve come to know very well while working with our clients from the United States.
Europeans are often surprised when they see how densely timber houses are built throughout the US. Whether it’s a suburb or a big city, you’ll find whole neighborhoods built from wood; building after building, lined up one after the other, reminiscent of the idyllic suburban areas of the 1950s.
In fact, not much has changed since the 1950s. With 93% of new houses in 2018 built using wooden materials, Americans are sticking to their lumber with pride.
House building is an expensive long-term project that requires lots of planning in advance, with any mistakes that are made resulting in wasted time and additional expenses. The good news is that there is a way to avoid human error and build a house that is both eco-friendly and cost-effective. Using structural insulated panels (SIPs) not only enables you to assemble the structure as easy as a doll house at the construction site, but with the right software also speeds up other building phases like modelling, documentation, and fabrication.
What are SIPs?
Most house builders go through the traditional motions of setting up traditional timber framing and insulation. But these guys obviously didn’t feel like dealing with stick-frames; they decided to stray from the rule book, get some SIP panels, and assemble a house in two weeks. Sounds almost like building with Legos, doesn’t it? The secret is that SIP panels already have both framing and insulation inside of them – a foam core sandwiched between two structural facings, typically oriented strand board (OSB).Read more »
The beginning of the 20th century was a very exciting time for builders and architects as they witnessed the birth of steel and concrete structures. The ingenious mix of these two components made it possible to build much higher than ever before, and that eventually led to the construction of skyscrapers. Wood as a building material seemed like a thing of the past. More than 100 years later, however, architects are once again thinking about using wood as their main building material. There are already apartment blocks built entirely of cross-laminated timber, and some ambitious companies are preparing blueprints for the first wooden skyscraper.
CLT reduces the carbon footprint
Turning towards wood might seem like a weird idea, to say the least. Why reintroduce something that burns and easily breaks? Isn’t that the reason why we moved on to concrete and steel? That is true to some extent since regular timber is neither malleable (unlike steel or concrete) nor strong enough to build high-rises.Read more »
This site uses cookies - they help us provide you with a better online experience. By using our website you accept that we may store and access cookies on your device. | Privacy policy.
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.